Series QSS4R/4

 $\mathbf{Set} - \mathbf{3}$

प्रश्न-पत्र कोड Q.P. Code 65/4/3

	अ	नुक्रमां	क			
	\mathbf{R}	oll I	No.			
 -T	T1		[Γ	T	
 _L	<u> </u>		<u> </u>	<u>L</u>	<u> </u>	<u> </u>

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 23 हैं।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 38 प्रश्न हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्व में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पढ़ेंगे और इस अविध के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।
- Please check that this question paper contains 23 printed pages.
- Please check that this question paper contains 38 questions.
- Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please write down the serial number of the question in the answer-book before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the candidates will read the question paper only and will not write any answer on the answer-book during this period.

गणित MATHEMATICS

निर्धारित समय: 3 घण्टे

अधिकतम अंक : 80

Time allowed: 3 hours

Maximum Marks: 80

65/4/3/21/QSS4R

207 C

Page 1 of 24

सामान्य निर्देश:

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका सख़्ती से पालन कीजिए :

- इस प्रश्न-पत्र में 38 प्रश्न हैं । सभी प्रश्न अनिवार्य हैं । *(i)*
- यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित है खण्ड **क, ख, ग, घ** तथा **ङ** । (ii)
- (iii) खण्ड-क में प्रश्न संख्या 1 से 18 तक बहुविकल्पीय तथा प्रश्न संख्या 19 एवं 20 अभिकथन एवं तर्क आधारित 1 अंक के प्रश्न हैं।
- (iv) **खण्ड-ख** में प्रश्न संख्या 21 से 25 तक अति लघु-उत्तरीय (VSA) प्रकार के 2 अंकों के प्रश्न हैं।
- खण्ड-ग में प्रश्न संख्या 26 से 31 तक लघु-उत्तरीय (SA) प्रकार के 3 अंकों के प्रश्न हैं।
- (vi) खण्ड-घ में प्रश्न संख्या 32 से 35 तक दीर्घ-उत्तरीय (LA) प्रकार के 5 अंकों के प्रश्न हैं।
- (vii) **खण्ड-ङ** में प्रश्न संख्या 36 से 38 तक प्रकरण अध्ययन आधारित 4 अंकों के प्रश्न हैं।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड-**ख** के 2 प्रश्नों में, खण्ड-**ग** के 3 प्रश्नों में. खण्ड-घ के 3 प्रश्नों में तथा खण्ड-ङ के 2 प्रश्नों में आंतरिक विकल्प का प्रावधान दिया गया है।
- (ix) कैल्कुलेटर का उपयोग **वर्जित** है।

खण्ड – क

इस खण्ड में 20 बहुविकल्पी प्रश्न हैं। प्रत्येक प्रश्न का 1 अंक है।

 $20 \times 1 = 20$

- यदि \overrightarrow{a} तथा \overrightarrow{b} दो ऐसे सदिश हैं कि $|\overrightarrow{a}| = 1$, $|\overrightarrow{b}| = 2$ तथा $\overrightarrow{a} \cdot \overrightarrow{b} = \sqrt{3}$ है, तो 1. $\stackrel{\rightarrow}{2a}$ $\stackrel{\rightarrow}{a}$ $\stackrel{\rightarrow$
 - (A) $\frac{\pi}{6}$

(B)

(C)

(D)

65/4/3/21/QSS4R

Page 2 of 24

General Instructions:

Read the following instructions very carefully and strictly follow them:

- This Question Paper contains 38 questions. All questions are compulsory.
- (ii) Question Paper is divided into five Sections – Section A, B, C, D and E.
- (iii) In **Section** A Questions no. 1 to 18 are Multiple Choice Questions (MCQs) and Questions no. 19 & 20 are Assertion-Reason based questions of 1 mark each.
- (iv) In Section B Questions no. 21 to 25 are Very Short Answer (VSA) type questions, carrying 2 marks each.
- In **Section C** Questions no. **26** to **31** are Short Answer (SA) type (v)questions, carrying 3 marks each.
- (vi) In **Section D** Questions no. **32** to **35** are Long Answer (LA) type questions, carrying 5 marks each.
- (vii) In **Section E** Questions no. **36** to **38** are case study based questions, carrying 4 marks each.
- (viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 3 questions in Section C, 3 questions in Section **D** and **2** questions in Section **E**.
- (ix) Use of calculators is **not** allowed.

SECTION - A

This section consists of **20** multiple choice questions of **1** mark each. **20** \times **1** = **20**

- If \overrightarrow{a} and \overrightarrow{b} are two vectors such that $|\overrightarrow{a}| = 1$, $|\overrightarrow{b}| = 2$ and $|\overrightarrow{a}| = \sqrt{3}$, 1. then the angle between $2\stackrel{\rightarrow}{a}$ and $-\stackrel{\rightarrow}{b}$ is:
 - (A)

65/4/3/21/QSS4R

Page 3 of 24

- 2. सिंदश $\overrightarrow{a}=2$ $\hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}-3\hat{j}-5\hat{k}$ तथा $\vec{c}=-3\hat{i}+4\hat{j}+4\hat{k}$ जिस त्रिभुज की भुजाओं को निरूपित करते हैं, वह है :
 - (A) एक समबाहु त्रिभुज

(B) एक अधिक-कोण त्रिभुज

(C) एक समद्विबाहु त्रिभुज

- (D) एक समकोण त्रिभुज
- 3. माना $\stackrel{\rightarrow}{a}$ एक ऐसा सदिश है जिसके लिए $|\stackrel{\rightarrow}{a}| = a$ है, तो

$$|\stackrel{\rightarrow}{a} \times \stackrel{\wedge}{i}|^2 + |\stackrel{\rightarrow}{a} \times \stackrel{\wedge}{j}|^2 + |\stackrel{\rightarrow}{a} \times \stackrel{\wedge}{k}|^2$$
 का मान है

(A) a^2

(B) $2a^2$

(C) $3a^2$

- (D) 0
- 4. यदि $A=\begin{bmatrix}3&1\\-1&2\end{bmatrix}$ है तथा $A^2+7I=kA$ है, तो k का मान है :
 - (A) 1

(B) 2

(C) 5

- (D) 7
- 5. माना $A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$ तथा $B = \frac{1}{3} \begin{bmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & \lambda \end{bmatrix}$ । यदि AB = I है, तो λ का मान है :
 - (A) $\frac{-9}{4}$

(B) -2

(C) $\frac{-3}{2}$

- (D) 0
- 6. x^2 का x^3 के सापेक्ष अवकलज है:
 - (A) $\frac{2}{3x}$

(B) $\frac{3x}{2}$

(C) $\frac{2x}{3}$

(D) $6x^5$

- 7. फलन f(x) = |x| + |x-2|
 - (A) संतत है, परन्तु x = 0 तथा x = 2 पर अवकलनीय नहीं है।
 - (B) अवकलनीय है, परन्तु x = 0 तथा x = 2 पर संतत नहीं है।
 - (C) संतत है, परन्तु केवल x = 0 पर अवकलनीय नहीं है।
 - (D) न तो संतत है और न ही x = 0 तथा x = 2 पर अवकलनीय है।

65/4/3/21/QSS4R

Page 4 of 24

- 2. The vectors $\overrightarrow{a} = 2 \overrightarrow{i} \overrightarrow{j} + \overrightarrow{k}$, $\overrightarrow{b} = \overrightarrow{i} 3 \overrightarrow{j} 5 \overrightarrow{k}$ and $\overrightarrow{c} = -3 \overrightarrow{i} + 4 \overrightarrow{j} + 4 \overrightarrow{k}$ represents the sides of
 - (A) an equilateral triangle
- (B) an obtuse-angled triangle
- (C) an isosceles triangle
- (D) a right-angled triangle
- 3. Let \overrightarrow{a} be any vector such that $|\overrightarrow{a}| = a$. The value of $|\overrightarrow{a} \times \mathring{i}|^2 + |\overrightarrow{a} \times \mathring{j}|^2 + |\overrightarrow{a} \times \mathring{k}|^2$ is:
 - (A) a^2

(B) $2a^2$

(C) $3a^2$

- (D) 0
- 4. If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ and $A^2 + 7I = kA$, then the value of k is:
 - (A) 1

(B) 2

(C) 5

- (D) 7
- 5. Let $A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$ and $B = \frac{1}{3} \begin{bmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & \lambda \end{bmatrix}$. If AB = I, then the value of
 - λis
 - (A) $\frac{-9}{4}$

(B) -2

(C) $\frac{-3}{2}$

- (D) 0
- 6. Derivative of x^2 with respect to x^3 , is:
 - $(A) \quad \frac{2}{3x}$

(B) $\frac{3x}{2}$

(C) $\frac{2x}{3}$

- (D) $6x^5$
- 7. The function f(x) = |x| + |x-2| is
 - (A) continuous, but not differentiable at x = 0 and x = 2.
 - (B) differentiable but not continuous at x = 0 and x = 2.
 - (C) continuous but not differentiable at x = 0 only.
 - (D) neither continuous nor differentiable at x = 0 and x = 2.

65/4/3/21/QSS4R

Page 5 of 24

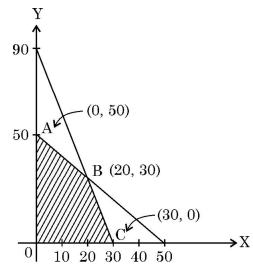
- 8. $\int_{0}^{\pi} \tan^{2} \left(\frac{\theta}{3} \right) d\theta$ का मान है :
 - (A) $\pi + \sqrt{3}$

(B) $3\sqrt{3} - \pi$

(C) $\sqrt{3} - \pi$

- (D) $\pi \sqrt{3}$
- 9. अवकल समीकरण $\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{2}{x}y = 0, x \neq 0$ का समाकलन गुणक है :
 - (A) $\frac{2}{x}$

(B) x^2


(C) $e^{\frac{2}{x}}$

- (D) $e^{\log(2x)}$
- 10. रेखाएँ $\frac{1-x}{2} = \frac{y-1}{3} = \frac{z}{1}$ तथा $\frac{2x-3}{2p} = \frac{y}{-1} = \frac{z-4}{7}$, p के जिस मान के लिए परस्पर लंबवत हैं, वह है:
 - (A) $-\frac{1}{2}$

(B) $\frac{1}{2}$

(C) 2

- (D) 3
- 11. रैखिक प्रोग्रामन समस्या (LPP) जिसका सुसंगत क्षेत्र दर्शाया गया है, के उद्देश्य फलन Z = 4x + y का अधिकतम मान है :

(A) 50

(B) 110

(C) 120

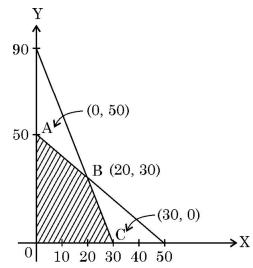
(D) 170

65/4/3/21/QSS4R

Page 6 of 24

- The value of $\int_{0}^{\pi} \tan^{2} \left(\frac{\theta}{3}\right) d\theta$ is : 8.

(B) $3\sqrt{3} - \pi$ (D) $\pi - \sqrt{3}$


- The integrating factor of the differential equation $\frac{dy}{dx} + \frac{2}{x}y = 0$, $x \ne 0$ is: 9.

(B) x^2

- (D) $e^{\log (2x)}$
- The lines $\frac{1-x}{2} = \frac{y-1}{3} = \frac{z}{1}$ and $\frac{2x-3}{2p} = \frac{y}{-1} = \frac{z-4}{7}$ are perpendicular to each other for p equal to:
 - (A) $-\frac{1}{2}$

(C)

- (D) 3
- The maximum value of Z = 4x + y for a L.P.P. whose feasible region is 11. given below is:

(A) 50 (B) 110

(C) 120 (D) 170

65/4/3/21/QSS4R

Page 7 of 24

12. यदि एक यादृच्छिक चर X का प्रायिकता बंटन, निम्न है:

X	0	1	2	3	4
P(X)	0.1	k	2k	k	0.1

जहाँ k एक अज्ञात अचर है।

तो यादृच्छिक चर X का मान 2 होने की प्रायिकता है

(A) $\frac{1}{5}$

(B) $\frac{2}{5}$

(C) $\frac{4}{5}$

- (D) 1
- 13. फलन $f(x) = kx \sin x$, निरंतर वर्धमान है, यदि
 - (A) k > 1

(B) k < 1

(C) k > -1

- (D) k < -1
- 14. एक रेखा का कार्तीय समीकरण, जो एक बिंदु जिसका स्थिति सिदश $\overrightarrow{a} = \hat{i} \hat{j}$ है, से होकर जाती है तथा रेखा $\vec{r} = \hat{i} + \hat{k} + \mu(2\hat{i} \hat{j})$ के समांतर है, है :
 - (A) $\frac{x-2}{1} = \frac{y+1}{0} = \frac{z}{1}$

(B) $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z}{0}$

(C) $\frac{x+1}{2} = \frac{y+1}{-1} = \frac{z}{0}$

- (D) $\frac{x-1}{2} = \frac{y}{-1} = \frac{z-1}{0}$
- 15. यदि $\begin{bmatrix} a & c & 0 \\ b & d & 0 \\ 0 & 0 & 5 \end{bmatrix}$ एक अदिश आव्यूह (scalar matrix) है, तो a+2b+3c+4d का मान है
 - (A) 0

(B) 5

(C) 10

- (D) 25
- 16. दिया है कि $A^{-1} = \frac{1}{7} \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix}$ है, तो आव्यूह A है :
 - (A) $7\begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$

(B) $\begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$

(C) $\frac{1}{7} \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$

(D) $\frac{1}{49} \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$

65/4/3/21/QSS4R

Page 8 of 24

12. The probability distribution of a random variable X is:

X	0	1	2	3	4
P(X)	0.1	k	2k	k	0.1

where k is some unknown constant.

The probability that the random variable X takes the value 2 is :

(A) $\frac{1}{5}$

(B) $\frac{2}{5}$

(C) $\frac{4}{5}$

- (D) 1
- 13. The function $f(x) = kx \sin x$ is strictly increasing for
 - (A) k > 1

(B) k < 1

(C) k > -1

- (D) k < -1
- 14. The Cartesian equation of a line passing through the point with position vector $\vec{a} = \hat{i} \hat{j}$ and parallel to the line $\vec{r} = \hat{i} + \hat{k} + \mu(2\hat{i} \hat{j})$, is
 - (A) $\frac{x-2}{1} = \frac{y+1}{0} = \frac{z}{1}$

(B) $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z}{0}$

(C) $\frac{x+1}{2} = \frac{y+1}{-1} = \frac{z}{0}$

- (D) $\frac{x-1}{2} = \frac{y}{-1} = \frac{z-1}{0}$
- 15. If $\begin{bmatrix} a & c & 0 \\ b & d & 0 \\ 0 & 0 & 5 \end{bmatrix}$ is a scalar matrix, then the value of a + 2b + 3c + 4d is :
 - (A) 0

(B) 5

(C) 10

- (D) 25
- 16. Given that $A^{-1} = \frac{1}{7} \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix}$, matrix A is:
 - (A) $7\begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$

(B) $\begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$

 $(C) \quad \frac{1}{7} \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$

(D) $\frac{1}{49} \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$

65/4/3/21/QSS4R

Page 9 of 24

17. यदि
$$A = \begin{bmatrix} 2 & 1 \\ -4 & -2 \end{bmatrix}$$
 है, तो $I - A + A^2 - A^3 + \dots$ है

(A)
$$\begin{bmatrix} -1 & -1 \\ 4 & 3 \end{bmatrix}$$

(B)
$$\begin{bmatrix} 3 & 1 \\ -4 & -1 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

(D)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

18. अवकल समीकरण $(x + 2y^2) \frac{dy}{dx} = y \ (y > 0)$ का समाकलन गुणक है :

(A)
$$\frac{1}{x}$$

(D)
$$\frac{1}{y}$$

अभिकथन – तर्क आधारित प्रश्न

प्रश्न संख्या $\mathbf{19}$ एवं $\mathbf{20}$ में एक अभिकथन (A) के बाद एक तर्क (R) दिया है । निम्न में से सही उत्तर चुनिए :

- (A) अभिकथन (A) तथा तर्क (R) दोनों सत्य हैं। तर्क (R) अभिकथन (A) की पूरी व्याख्या करता है।
- (B) अभिकथन (A) तथा तर्क (R) दोनों सत्य हैं । तर्क (R) अभिकथन (A) की पूरी व्याख्या नहीं करता ।
- (C) अभिकथन (A) सत्य है, परन्तु तर्क (R) असत्य है।
- (D) अभिकथन (A) असत्य है जबिक तर्क (R) सत्य है।
- 19. **अभिकथन (A) :** संबंध $R = \{(x, y) : (x + y) \ \text{एक अभाज्य संख्या है तथा } x, y \in N\}$ एक स्वतुल्य संबंध नहीं है ।

तर्क (R): सभी प्राकृत संख्याओं n के लिए, 2n एक भाज्य संख्या है।

65/4/3/21/QSS4R

Page 10 of 24

- 17. If $A = \begin{bmatrix} 2 & 1 \\ -4 & -2 \end{bmatrix}$, then the value of $I A + A^2 A^3 + \dots$ is:
 - (A) $\begin{bmatrix} -1 & -1 \\ 4 & 3 \end{bmatrix}$

(B) $\begin{bmatrix} 3 & 1 \\ -4 & -1 \end{bmatrix}$

(C) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

- (D) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- 18. The integrating factor of the differential equation $(x + 2y^2) \frac{dy}{dx} = y \ (y > 0)$ is:
 - (A) $\frac{1}{x}$

(B) x

(C) y

(D) $\frac{1}{y}$

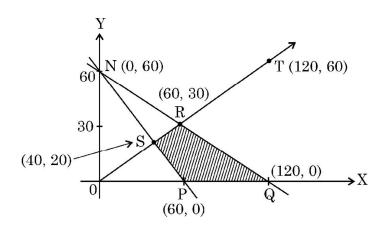
ASSERTION-REASON BASED QUESTIONS

Questions No. 19 & 20, are Assertion (A) and Reason (R) based questions carrying 1 mark each. Two statements are given, one labelled Assertion (A) and the other labelled Reason (R).

Select the correct answer from the codes (A), (B), (C) and (D) as given below:

- (A) Both Assertion (A) and Reason (R) are true and the Reason (R) is the correct explanation of Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true and Reason (R) is not the correct explanation of the Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- (D) Assertion (A) is false, but Reason (R) is true.
- 19. **Assertion (A)**: The relation $R = \{(x, y) : (x + y) \text{ is a prime number and } x, y \in N\}$ is not a reflexive relation.

Reason (R): The number '2n' is composite for all natural numbers n.


65/4/3/21/QSS4R

Page 11 of 24

20. अभिकथन (A): किसी LPP के लिए परिबद्ध सुसंगत क्षेत्र के कोणीय बिंदु दर्शाए गए हैं।

 ${
m Z} = x + 2{
m y}$ का अधिकतम मान अनन्त बिंदुओं पर हैं।

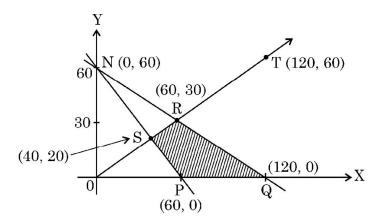
तर्क (R): एक LPP जिसका सुसंगत क्षेत्र परिबद्ध हो, का इष्टतम हल कोणीय बिंदु पर होता है।

खण्ड - ख

इस खण्ड में 5 अति लघु उत्तर वाले प्रश्न हैं, जिनमें प्रत्येक के 2 अंक हैं।

21. (a) यदि $y = \cos^3(\sec^2 2t)$ है, तो $\frac{dy}{dt}$ ज्ञात कीजिए।

अथवा


- (b) यदि $x^y = e^{x-y}$ है, तो सिद्ध कीजिए कि $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2}$.
- 22. एक घन का आयतन $6~{
 m cm}^3/{
 m s}$ की दर से बढ़ रहा है। घन का पृष्ठीय क्षेत्रफल किस दर से बढ़ रहा है, जब इसके किनारे की लंबाई $8~{
 m cm}$ है ?
- 23. दर्शाइए कि $f(x) = \sin x + \cos x$ द्वारा प्रदत्त फलन f, अंतराल $\left(\frac{\pi}{4}, \frac{5\pi}{4}\right)$ में निरंतर हासमान है।

65/4/3/21/QSS4R

Page 12 of 24

20. **Assertion (A)**: The corner points of the bounded feasible region of a L.P.P. are shown below. The maximum value of Z = x + 2y occurs at infinite points.

Reason (R): The optimal solution of a LPP having bounded feasible region must occur at corner points.

SECTION - B

In this section there are 5 very short answer type questions of 2 marks each.

21. (a) If $y = \cos^3(\sec^2 2t)$, find $\frac{dy}{dt}$.

OR

- (b) If $x^y = e^{x-y}$, prove that $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2}$.
- 22. The volume of a cube is increasing at the rate of 6 cm³/s. How fast is the surface area of cube increasing, when the length of an edge is 8 cm?
- 23. Show that the function f given by $f(x) = \sin x + \cos x$, is strictly decreasing in the interval $\left(\frac{\pi}{4}, \frac{5\pi}{4}\right)$.

65/4/3/21/QSS4R

Page 13 of 24

24. (a)
$$\frac{-\pi}{2} < x < \frac{\pi}{2}$$
 के लिए $\tan^{-1}\left(\frac{\cos x}{1-\sin x}\right)$ को सरलतम रूप में व्यक्त कीजिए।

अथवा

(b)
$$an^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{\sqrt{2}}\right)$$
 का मुख्य मान ज्ञात कीजिए।

25. ज्ञात कीजिए :
$$\int \frac{2x}{(x^2+1)(x^2-4)} dx$$

खण्ड - ग

इस खण्ड में 6 लघु-उत्तर प्रकार के प्रश्न हैं, जिनमें प्रत्येक के 3 अंक हैं।

26. दिया है कि
$$y = (\cos x)^x + \cos^{-1} \sqrt{x}$$
 , $\frac{\mathrm{d}y}{\mathrm{d}x}$ ज्ञात कीजिए।

27. (a) अवकल समीकरण $\frac{\mathrm{dy}}{\mathrm{d}x} = \mathrm{y}\cot 2x$ का विशिष्ट हल ज्ञात कीजिए, दिया है कि $\mathrm{y}\left(\frac{\pi}{4}\right) = 2$ ।

अथवा

- (b) अवकल समीकरण $(x e^{\frac{y}{x}} + y) dx = x dy$ का विशिष्ट हल ज्ञात कीजिए, दिया है कि y = 1 है जब x = 1 है।
- 28. ज्ञात कीजिए : $\int \sec^3 \theta \ d\theta$

65/4/3/21/QSS4R

Page 14 of 24

24. (a) Express
$$\tan^{-1}\left(\frac{\cos x}{1-\sin x}\right)$$
, where $\frac{-\pi}{2} < x < \frac{\pi}{2}$ in the simplest form.

OR

(b) Find the principal value of
$$\tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{\sqrt{2}}\right)$$
.

25. Find :
$$\int \frac{2x}{(x^2+1)(x^2-4)} dx.$$

SECTION - C

In this section there are 6 short answer type questions of 3 marks each.

26. Find
$$\frac{dy}{dx}$$
, if $y = (\cos x)^x + \cos^{-1} \sqrt{x}$ is given.

27. (a) Find the particular solution of the differential equation $\frac{dy}{dx} = y \cot 2x$, given that $y\left(\frac{\pi}{4}\right) = 2$.

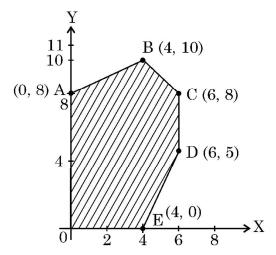
OR

(b) Find the particular solution of the differential equation

$$(xe^{\frac{y}{x}} + y) dx = x dy$$
, given that $y = 1$ when $x = 1$.

28. Find : $\int \sec^3 \theta \ d\theta$

65/4/3/21/QSS4R


Page 15 of 24

29. (a) 52 पत्तों की अच्छी प्रकार से फेंटी गई ताश की गड्डी में से एक पत्ता खो जाता है। शेष पत्तों में से यादृच्छया एक पत्ता निकाला जाता है, जो बादशाह वाला पत्ता पाया जाता है। खो गए पत्ते के बादशाह वाला पत्ता होने की प्रायिकता ज्ञात कीजिए।

अथवा

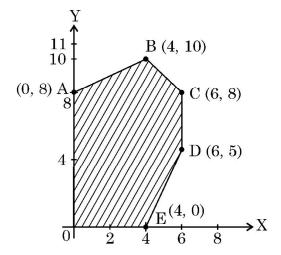
- (b) एक अभिनत पासे पर समसंख्या आने की प्रायिकता, विषम संख्या के आने की प्रायिकता से दुगुनी है। इस पासे को दो बार उछाला गया। छ: आने की संख्या का प्रायिकता बंटन ज्ञात कीजिए। इस बंटन का माध्य भी ज्ञात कीजिए।
- 30. रेखीय अवरोधों के निकाय द्वारा निर्धारित सुसंगत क्षेत्र के कोणीय बिंदु आकृति में दर्शाए गए हैं :

- (i) यदि Z = 3x 4y उद्देश्य फलन है, तो Z का अधिकतम मान ज्ञात कीजिए।
- (ii) यदि Z = px + qy, p, q > 0 उद्देश्य फलन है, तो p तथा q में वह संबंध ज्ञात कीजिए, जिसके लिए Z का अधिकतम मान B(4, 10) तथा C(6, 8) पर हो।
- 31. (a) मान ज्ञात कीजिए : $\int_{0}^{\frac{\pi}{4}} \frac{x \, dx}{1 + \cos 2x + \sin 2x}$

अथवा

(b) ज्ञात कीजिए :
$$\int e^x \left[\frac{1}{(1+x^2)^{\frac{3}{2}}} + \frac{x}{\sqrt{1+x^2}} \right] dx$$

65/4/3/21/QSS4R


Page 16 of 24

29. (a) A card from a well shuffled deck of 52 playing cards is lost. From the remaining cards of the pack, a card is drawn at random and is found to be a King. Find the probability of the lost card being a King.

OR

- (b) A biased die is twice as likely to show an even number as an odd number. If such a die is thrown twice, find the probability distribution of the number of sixes. Also, find the mean of the distribution.
- 30. The corner points of the feasible region determined by the system of linear constraints are as shown in the following figure :

- (i) If Z = 3x 4y be the objective function, then find the maximum value of Z.
- (ii) If Z = px + qy where p, q > 0 be the objective function. Find the condition on p and q so that maximum value of Z occurs at B(4, 10) and C(6, 8).
- 31. (a) Evaluate: $\int_{0}^{\frac{\pi}{4}} \frac{x \, dx}{1 + \cos 2x + \sin 2x}$

OR

(b) Find:
$$\int e^x \left[\frac{1}{(1+x^2)^{\frac{3}{2}}} + \frac{x}{\sqrt{1+x^2}} \right] dx$$

65/4/3/21/QSS4R

Page 17 of 24

खण्ड – घ

इस खण्ड में चार दीर्घ-उत्तर वाले प्रश्न हैं। प्रत्येक प्रश्न के 5 अंक हैं।

32. (a) माना $A = R - \{5\}$ तथा $B = R - \{1\}$ है । $f(x) = \frac{x-3}{x-5}$ द्वारा परिभाषित फलन $f: A \to B$ पर विचार कीजिए । दर्शाइए कि f एकैकी व आच्छादक है ।

अथवा

- (b) जाँच कीजिए कि क्या सभी वास्तविक संख्याओं के समुच्चय R में परिभाषित संबंध $S = \{(a,b): \text{जहाँ } a-b+\sqrt{2} \ \text{एक अपिरमेय संख्या है} \}$ स्वतुल्य, सममित या संक्रामक है ।
- 33. (a) रेखा $\frac{x}{2} = \frac{2y-6}{4} = \frac{1-z}{-1}$ तथा इसके समांतर एक अन्य रेखा जो बिंदु (4, 0, -5) से होकर जाती है, के बीच की दूरी ज्ञात कीजिए।

अथवा

- (b) यदि रेखाएँ $\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2}$ तथा $\frac{x-1}{3k} = \frac{y-1}{1} = \frac{z-6}{-7}$ परस्पर लंबवत हैं, तो k का मान ज्ञात कीजिए । अत: उपरोक्त दोनों रेखाओं के लंबवत एक रेखा का सदिश समीकरण लिखिए, जो बिंदु (3, -4, 7) से होकर जाती है ।
- 34. यदि $A = \begin{vmatrix} 1 & 2 & 1 \\ 2 & 3 & -1 \\ 1 & 0 & 1 \end{vmatrix}$ है, तो A^{-1} ज्ञात कीजिए :

अत: निम्न समीकरण निकाय का हल ज्ञात कीजिए:

$$x + 2y + z = 5$$

$$2x + 3y = 1$$

$$x - y + z = 8$$

65/4/3/21/QSS4R

Page 18 of 24

SECTION - D

In the section there are 4 long answer type questions of 5 marks each.

32. (a) Let A = R - {5} and B = R - {1}. Consider the function f : A \rightarrow B, defined by $f(x) = \frac{x-3}{x-5}$. Show that f is one-one and onto.

OR

- (b) Check whether the relation S in the set of real numbers R defined by $S = \{(a, b) : \text{where } a b + \sqrt{2} \text{ is an irrational number} \} \text{ is reflexive,}$ symmetric or transitive.
- 33. (a) Find the distance between the line $\frac{x}{2} = \frac{2y-6}{4} = \frac{1-z}{-1}$ and another line parallel to it passing through the point (4, 0, -5).

OR

- (b) If the lines $\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2}$ and $\frac{x-1}{3k} = \frac{y-1}{1} = \frac{z-6}{-7}$ are perpendicular to each other, find the value of k and hence write the vector equation of a line perpendicular to these two lines and passing through the point (3, -4, 7).
- 34. Find A^{-1} , if $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & -1 \\ 1 & 0 & 1 \end{bmatrix}$. Hence, solve the following system of equations :

$$x + 2y + z = 5$$

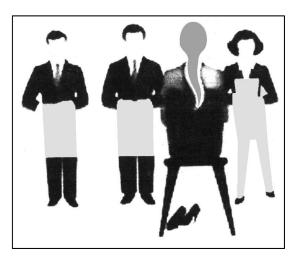
$$2x + 3y = 1$$

$$x - y + z = 8$$

65/4/3/21/QSS4R

Page 19 of 24

(a) वक्र y = x|x| का आलेख खींचिए। अतः इस वक्र, X-अक्ष तथा कोटियों x = -2 तथा 35. x=2 के बीच घिरे क्षेत्र का क्षेत्रफल समाकलन से ज्ञात कीजिए।


अथवा

समाकलन के प्रयोग से दीर्घवृत्त $9x^2 + 25y^2 = 225$, रेखाओं x = -2 तथा x = 2 और X-अक्ष के बीच घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।

खण्ड – ङ

इस खण्ड में 3 प्रकरण आधारित प्रश्न हैं। प्रत्येक प्रश्न के 4 अंक हैं।

रोहित, जसप्रीत और आलिया एक ही पद की तीन रिक्तियों के लिए साक्षात्कार के लिए उपस्थित हुए। रोहित के चुने जाने की प्रायिकता $\frac{1}{5}$ है, जसप्रीत के चुने जाने की प्रायिकता $\frac{1}{3}$ तथा आलिया के चुने जाने की प्रायिकता $\frac{1}{4}$ है। चयन की घटना एक दूसरे से स्वतंत्र है।

उपरोक्त जानकारी के आधार पर निम्न प्रश्नों के उत्तर दें :

इनमें से कम से कम एक के चुने जाने की प्रायिकता क्या है? (i)

 $P(G \mid \overline{H})$ ज्ञात कीजिए जहाँ G, जसप्रीत के चुने जाने को दर्शाती है तथा \overline{H} रोहित के न चुने जाने को दर्शाती है।

(iii) उनमें से केवल एक के चुने जाने की प्रायिकता ज्ञात कीजिए।

अथवा

(iii) उनमें से कोई दो के चुने जाने की प्रायिकता ज्ञात कीजिए।

65/4/3/21/QSS4R

Page 20 of 24

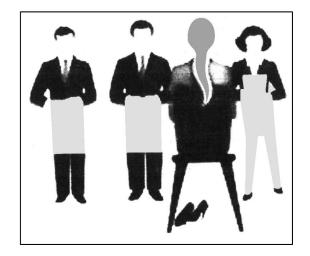
1

1

 $\mathbf{2}$

2

35. (a) Sketch the graph of y = x |x| and hence find the area bounded by this curve, X-axis and the ordinates x = -2 and x = 2, using integration.


OR

(b) Using integration, find the area bounded by the ellipse $9x^2 + 25y^2 = 225$, the lines x = -2, x = 2, and the X-axis.

SECTION - E

In this section, there are 3 case study based question of 4 marks each.

36. Rohit, Jaspreet and Alia appeared for an interview for three vacancies in the same post. The probability of Rohit's selection is $\frac{1}{5}$, Jaspreet's selection is $\frac{1}{3}$ and Alia's selection is $\frac{1}{4}$. The event of selection is independent of each other.

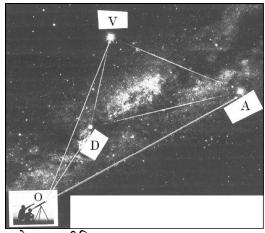
Based on the above information, answer the following questions:

- (i) What is the probability that at least one of them is selected?
- (ii) Find P(G | H̄) where G is the event of Jaspreet's selection and H̄ denotes the event that Rohit is not selected.
- (iii) Find the probability that exactly one of them is selected.

OR

(iii) Find the probability that exactly two of them are selected. 2

65/4/3/21/QSS4R Page 21 of 24 P.T.O.



37. एक स्टोर, कैल्कुलेटर ₹ 350 प्रति कैल्कुलेटर के भाव से बेच रहा है। मार्केट के एक सर्वे के अनुसार मूल्य (p) के घटाने पर बिकने वाले कैल्कुलेटरों की संख्या (x) बढ़ जाती है। मूल्य और बिकने वाली संख्या का संबंध, अर्थात् माँग फलन p = $450 - \frac{1}{2}x$ द्वारा प्रदत्त है

उपरोक्त के आधार पर निम्न प्रश्नों के उत्तर दीजिए :

- (i) अधिकतम आय R(x) = xp(x) प्राप्त करने के लिए कितनी इकाई (x) बेचने होंगे ? अपने उत्तर का सत्यापन कीजिए ।
- (ii) अधिकतम आय के लिए एक कैल्कुलेटर के मूल्य को स्टोर को कितना घटाना होगा ?
- 38. एक खगोलीय केंद्र में एक प्रशिक्षक एक विशेष तारामंडल में सबसे चमकीले तीन सितारों को दर्शाता है। मान लें कि दूरबीन O (0,0,0) पर स्थित है तथा तीन सितारों की स्थितियाँ D, A तथा V पर इस प्रकार हैं कि उनके स्थिति–सदिश क्रमश: $2\hat{i} + 3\hat{j} + 4\hat{k}$, $7\hat{i} + 5\hat{j} + 8\hat{k}$ तथा $-3\hat{i} + 7\hat{j} + 11\hat{k}$ हैं।

उपरोक्त के आधार पर निम्न के उत्तर दीजिए :

- (i) सितारा V, सितारे A से कितनी दूरी पर है ?
- (ii) DA की दिशा में एक एकक-सदिश ज्ञात कीजिए।
- (iii) ∠VDA का माप ज्ञात कीजिए।

अथवा

(iii) सदिश \overrightarrow{DV} का सदिश \overrightarrow{DA} पर प्रक्षेप कितना है ?

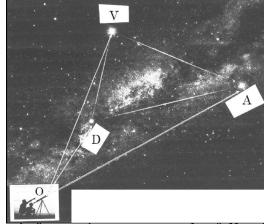
65/4/3/21/QSS4R

Page 22 of 24

1

1

2


2

A store has been selling calculators at ₹ 350 each. A market survey indicates that a reduction in price (p) of calculator increases the number of units (x) sold. The relation between the price and quantity sold is given by the demand function $p = 450 - \frac{1}{2}x$.

Based on the above information, answer the following questions:

- Determine the number of units (x) that should be sold to maximise the revenue R(x) = xp(x). Also, verify the result.
- What rebate in price of calculator should the store give to maximise (ii) the revenue?
- An instructor at the astronomical centre shows three among the brightest stars 38. in a particular constellation. Assume that the telescope is located at O(0, 0, 0) and the three stars have their locations at the points D, A and V having position vectors $2\hat{i} + 3\hat{j} + 4\hat{k}$, $7\hat{i} + 5\hat{j} + 8\hat{k}$ and $-3\hat{i} + 7\hat{j} + 11\hat{k}$ respectively.

Based on the above information, answer the following questions:

- How far is the star V from star A?
- Find a unit vector in the direction of DA. 1 2
- (iii) Find the measure of ∠VDA.

 \mathbf{OR}

(iii) What is the projection of vector DV on vector DA?

65/4/3/21/QSS4R

Page 23 of 24

1

2

65/4/3/21/QSS4R **207** C

Page 24 of 24

Marking Scheme

Strictly Confidential

(For Internal and Restricted use only) Senior School Certificate Examination, 2024

MATHEMATICS PAPER CODE 65/4/3

General Instructions:

J.	
1	You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.
2	"Evaluation policy is a confidential policy as it is related to the confidentiality of the
	examinations conducted, Evaluation done and several other aspects. Its' leakage to
	public in any manner could lead to derailment of the examination system and affect the
	life and future of millions of candidates. Sharing this policy/document to anyone,
	publishing in any magazine and printing in News Paper/Website etc may invite action
	under various rules of the Board and IPC."
3	Evaluation is to be done as per instructions provided in the Marking Scheme. It should not
	be done according to one's own interpretation or any other consideration. Marking Scheme
	should be strictly adhered to and religiously followed. However, while evaluating, answers
	which are based on latest information or knowledge and/or are innovative, they may be
	assessed for their correctness otherwise and due marks be awarded to them.
4	The Marking scheme carries only suggested value points for the answers.
	These are Guidelines only and do not constitute the complete answer. The students can have
	their own expression and if the expression is correct, the due marks should be awarded
	accordingly.
5	The Head-Examiner must go through the first five answer books evaluated by each evaluator
	on the first day, to ensure that evaluation has been carried out as per the instructions given
	in the Marking Scheme. If there is any variation, the same should be zero after delibration
	and discussion. The remaining answer books meant for evaluation shall be given only after
	ensuring that there is no significant variation in the marking of individual evaluators.
6	Evaluators will mark ($\sqrt{\ }$) wherever answer is correct. For wrong answer CROSS 'X" be
	marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that
	answer is correct and no marks are awarded. This is most common mistake which
	evaluators are committing.
7	If a question has parts, please award marks on the right-hand side for each part. Marks
	awarded for different parts of the question should then be totaled up and written in the left-
	hand margin and encircled. This may be followed strictly.
8	If a question does not have any parts, marks must be awarded in the left-hand margin and
	encircled. This may also be followed strictly.
9	In Q1-Q20, if a candidate attempts the question more than once (without canceling
	the previous attempt), marks shall be awarded for the first attempt only and the other
	answer scored out with a note "Extra Question".

www.studentbro.in

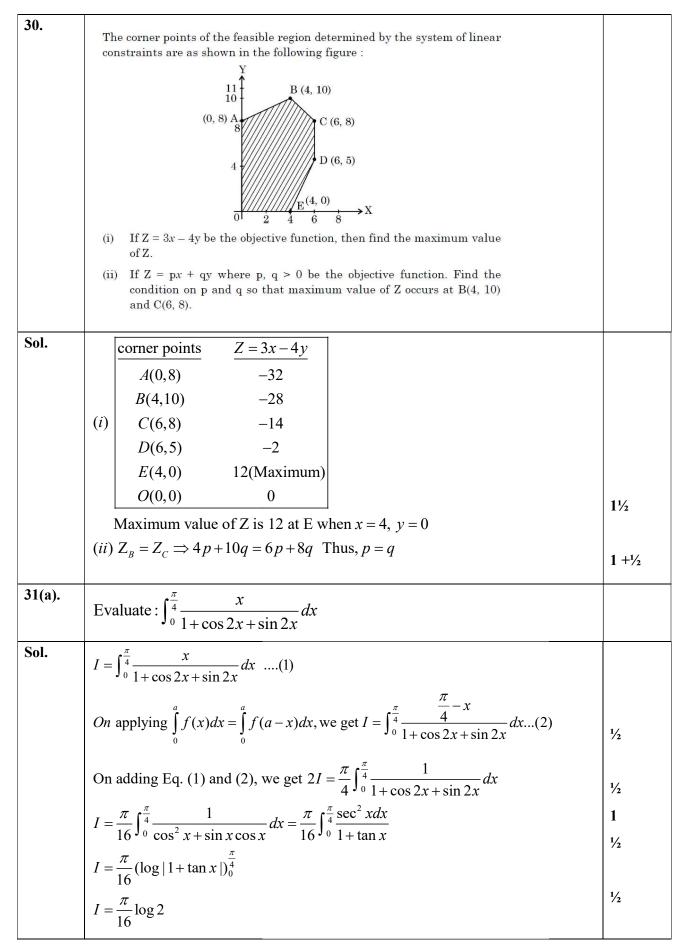
10	In Q21-Q38, if a student has attempted an extra question, answer of the question
	deserving more marks should be retained and the other answer scored out with a
11	note "Extra Question". No marks to be deducted for the cumulative effect of an error. It should be penalized only
	once.
12	A full scale of marks(example 0 to 80/70/60/50/40/30 marks as given in
	Question Paper) has to be used. Please do not hesitate to award full marks if the answer
	deserves it.
13	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours
	every day and evaluate 20 answer books per day in main subjects and 25 answer books per
	day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced
	syllabus and number of questions in question paper.
14	Ensure that you do not make the following common types of errors committed by the
	Examiner in the past:-
	• Leaving answer or part thereof unassessed in an answer book.
	• Giving more marks for an answer than assigned to it.
	Wrong totaling of marks awarded on an answer. When the formal of the control of the contro
	• Wrong transfer of marks from the inside pages of the answer book to the title page.
	Wrong question wise totaling on the title page. Wrong totaling of marks of the two columns on the title page.
	 Wrong totaling of marks of the two columns on the title page. Wrong grand total.
	 Wrong grand total. Marks in words and figures not tallying/not same.
	 Wrong transfer of marks from the answer book to online award list.
	 Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is
	correctly and clearly indicated. It should merely be a line. Same is with the X for
	incorrect answer.)
	• Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
15	While evaluating the answer books if the answer is found to be totally incorrect, it should be
	marked as cross (X) and awarded zero (0)Marks.
16	Any un assessed portion, non-carrying over of marks to the title page, or totaling error
	detected by the candidate shall damage the prestige of all the personnel engaged in the
	evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned,
	it is again reiterated that the instructions be followed meticulously and judiciously.
17	The Examiners should acquaint themselves with the guidelines given in the "Guidelines for
	spot Evaluation" before starting the actual evaluation.
18	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to
40	the title page, correctly totaled and written in figures and words.
19	The candidates are entitled to obtain photocopy of the Answer Book on request on payment
	of the prescribed processing fee. All Examiners/Additional Head Examiners/Head
	Examiners are once again reminded that they must ensure that evaluation is carried out
	strictly as per value points for each answer as given in the Marking Scheme.

www.studentbro.in

Q. No.	D. EXPECTED OUTCOMES/VALUE POINTS								
	SECTION A Questions no. 1 to 18 are multiple choice questions (MCQs) and questions number 19 and 20 are Assertion-Reason based questions of 1 mark each.								
1.	If \vec{a} and \vec{b} are two vectors such that $ \vec{a} = 1, \vec{b} = 2$ and $\vec{a} \cdot \vec{b} = \sqrt{3}$, then the angle								
	between $2\vec{a}$ and $-\vec{b}$ is:								
	(A) $\frac{\pi}{6}$ (B) $\frac{\pi}{3}$ (C) $\frac{5\pi}{6}$ (D) $\frac{11\pi}{6}$								
Ans:	(C) $\frac{5\pi}{6}$	1							
2.	The vectors $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$, $\vec{b} = \hat{i} - 3\hat{j} - 5\hat{k}$ and $\vec{c} = -3\hat{i} + 4\hat{j} + 4\hat{k}$ represents the sides of								
	(A) an equilater triangle (B) an obtuse-angled triangle								
	(C) an isosceles triangle (D) a right-angled triangle								
Ans:	(D) a right-angled triangle	1							
3.	Let \vec{a} be any vector such that $ \vec{a} = a$. The value of								
	$ \vec{\mathbf{a}} \times \hat{i} ^2 + \vec{\mathbf{a}} \times \hat{j} ^2 + \vec{\mathbf{a}} \times \hat{k} ^2$ is:								
	$(A) a^2$ $(B) 2a^2$ $(C) 3a^2$ $(D) 0$								
Ans:	(B) 2a ²	1							
4.	If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ and $A^2 + 7I = kA$, then value of k is:								
	(A) 1 (B) 2 (C) 5 (D) 7								
Ans:	(C) 5	1							
5.	Let $A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$ and $B = \frac{1}{3} \begin{bmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & \lambda \end{bmatrix}$. If $AB = I$, then value of λ is: $(A) \frac{-9}{4} \qquad (B) -2 \qquad (C) \frac{-3}{2} \qquad (D) 0$								
	$(A) \frac{-9}{4}$ $(B) -2$ $(C) \frac{-3}{2}$ $(D) 0$								
Ans:	$(B) -2 \text{ OR } (C) \frac{-3}{2}$	1							
6.	Derivative of x^2 with respect to x^3 , is:								
	(A) $\frac{2}{3x}$ (B) $\frac{3x}{2}$ (C) $\frac{2x}{3}$ (D) $6x^5$								
Ans:	(A) $\frac{2}{3x}$	1							

T	
The function $f(x) = x + x-2 $ is (A) continuous but not differentiable at $x = 0$ and $x = 2$	
(B) differentiable but not continuous at $x = 0$ and $x = 2$.	
(C) continuous but not differentiable at $x = 0$ only. (D) poither continuous per differentiable at $x = 0$ and $x = 2$	
(D) Heither continuous not unferentiable at x = 0 and x = 2.	
(A) continuous, but not differentiable at $x = 0$ and $x = 2$	1
The value of $\int_{0}^{\pi} \tan^{2} \left(\frac{\theta}{3} \right) d\theta$ is:	
(A) $\pi + \sqrt{3}$ (B) $3\sqrt{3} - \pi$ (C) $\sqrt{3} - \pi$ (D) $\pi - \sqrt{3}$	
$(B) 3\sqrt{3} - \pi$	1
(A) $\frac{2}{x}$ (B) x^2 (C) $e^{\frac{2}{x}}$ (D) $e^{\log(2x)}$	
$(B) x^2$	1
The lines $\frac{1-x}{2} = \frac{y-1}{3} = \frac{z}{1}$ and $\frac{2x-3}{2p} = \frac{y}{-1} = \frac{z-4}{7}$ are perpendicular to	
each other for p equal to :	
(A) $-\frac{1}{2}$ (B) $\frac{1}{2}$	
(C) 2 (D) 3	
(C) 2	1
The maximum value of $Z = 4x + y$ for a L.P.P. whose feasible region is	
given below is	
A (0, 50)	
50 B (20, 30)	
$ \begin{array}{c} (30,0) \\ 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \end{array} $	
(A) 50 (B) 110 (C) 120 (D) 170	
	(A) continuous, but not differentiable at $x=0$ and $x=2$. (B) differentiable but not continuous at $x=0$ and $x=2$. (C) continuous but not differentiable at $x=0$ only. (D) neither continuous nor differentiable at $x=0$ and $x=2$. (A) continuous, but not differentiable at $x=0$ and $x=2$. The value of $\int_0^{\pi} \tan^2\left(\frac{\theta}{3}\right) d\theta$ is: $(A) \pi + \sqrt{3} \qquad (B) 3\sqrt{3} - \pi \qquad (C) \sqrt{3} - \pi \qquad (D) \pi - \sqrt{3}$ (B) $3\sqrt{3} - \pi$ The integrating factor of the differential equation $\frac{dy}{dx} + \frac{2}{x}y = 0$, $(x \neq 0)$ is: $(A) \frac{2}{x} \qquad (B) x^2 \qquad (C) e^{\frac{1}{x}} \qquad (D) e^{\log(2x)}$ (B) x^2 The lines $\frac{1-x}{2} = \frac{y-1}{3} = \frac{z}{1}$ and $\frac{2x-3}{2p} = \frac{y}{-1} = \frac{z-4}{7}$ are perpendicular to each other for p equal to: $(A) -\frac{1}{2} \qquad (B) \frac{1}{2}$ (C) 2 (D) 3 (C) 2 The maximum value of $Z = 4x + y$ for a L.P.P. whose feasible region is given below is

v T	The probability distroisted where k is some unk	X P(X)	0 0.1	1	2	3	4		
Т		P(X)	(72)	•	_	_			
Т		34 1/2	U.I	1_	01-	1_	700		
Т				k	2k	k	0.1		
	The probability that i						. •		
		_					s the va	alue 2 is:	
	A) $\frac{1}{5}$	$(B) \frac{2}{5}$			(C)	$\frac{4}{5}$		(D) 1	
Ans:	B) $\frac{2}{5}$								1
13.	The function $f(x) =$	kx - si	n x is	stri	ctly in	ncrea	asing	for	
7	(A) k > 1				(E	8) k	< 1		
=	(C) $k > -1$				(E) k	<-1		
Ans: (A	A) k > 1								1
14. T	The cartesian equation	n of a li	ne pas	ssing	thro	ıgh t	he poi	nt with position	
v	vector $\vec{a} = \hat{i} - \hat{j}$ and p	arallel to	o the l	line i	$\vec{r} = \hat{i} +$	$\hat{k} + \hat{k}$	$u(2\hat{i} -$	\hat{j}), is	
	A) $\frac{x-2}{1} = \frac{y+1}{0} = \frac{z}{1}$			(B	$\frac{x-}{2}$	$\frac{1}{2} = \frac{1}{2}$	$\frac{y+1}{-1} =$	$\frac{z}{0}$	
	C) $\frac{x+1}{2} = \frac{y+1}{-1} = \frac{z}{0}$				2		$\frac{y}{-1} = \frac{z}{1}$		
Ans:	B) $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z}{0}$								1
15.	$\begin{bmatrix} a & c & 0 \end{bmatrix}$								
I	$ \begin{array}{c cccc} f & b & d & 0 \\ 0 & 0 & 5 \end{array} $ is a so	alar ma	ıtrix, t	then	the v	alue	of <i>a</i> +	2b + 3c + 4d is	
	<i>A</i>) 0	(B) 5			(0	C) 10	0	(D) 25	
Ans: (l	D) 25								1
16.	Given that $A^{-1} = \frac{1}{7} \begin{bmatrix} 2 \\ -1 \end{bmatrix}$	$\begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix}$	matrix	κAi	s:				
(1	$A) \ 7 \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix} \qquad (A) \ 7 \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$	$(B)\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	$\begin{bmatrix} -1 \\ 2 \end{bmatrix}$	($C\left(\frac{1}{7}\right)$	3	-1 2	$(D)\frac{1}{49}\begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$	
Ans:	$B)\begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$								1


Ans:	(B) Both A and R are true but R is not the correct explanation of A.	1
	(40, 20) P (60, 0) Reason (R): The optimal solution of a LPP having bounded feasible region must occur at corner points.	
	N (0, 60) T (120, 60)	
20.	Assertion (A): The corner points of the bounded feasible region of a L.P.P. are shown below. The maximum value of $Z = x + 2y$ occurs at infinite points.	
Ans:	(C) Assertion (A) is true, but Reason (R) is false.	1
19.	 Assertion (A): The relation R = {(x, y) : (x + y) is a prime number and x, y ∈ N} is not a reflexive relation. Reason (R): The number '2n' is composite for all natural numbers n. 	
	(D) Assertion (A) is false but Reason (R) is true.	
	correct explanation of Assertion (A). (C) Assertion (A) is true but Reason (R) is false.	
	(B) Both Assertion (A) and Reason (R) are true and Reason (R) is not the	
	correct explanation of Assertion (A).	
	Select the correct nswer from the codes (A), (B), (C) and (D) as given below: (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the	
	and the other labelled Reason (R).	
	Questions No. 19 & 20, are Assertion (A) and Reason (R) based questions carrying 1 mark each. Two statements are given, one labelled Assertion (A)	
	ASSERTION-REASON BASED QUSTIONS	
Ans:	(D) $\frac{1}{y}$	1
	$(A) \frac{1}{x} \qquad (B) x \qquad (C) y \qquad (D) \frac{1}{y}$	
18.	The integrating factor of the differential equation $(x + 2y^2) \frac{dy}{dx} = y$ $(y > 0)$ is:	
Ans:	$(A)\begin{bmatrix} -1 & -1 \\ 4 & 3 \end{bmatrix}$	1
	$ (A) \begin{bmatrix} -1 & -1 \\ 4 & 3 \end{bmatrix} \qquad (B) \begin{bmatrix} 3 & 1 \\ -4 & -1 \end{bmatrix} \qquad (C) \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad (D) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} $	
17.	If $A = \begin{bmatrix} 2 & 1 \\ -4 & -2 \end{bmatrix}$, then the value of $I - A + A^2 - A^3 + \dots$ is	

	SECTION B	
	In this section there are 5 very short answer type questions of 2 marks each.	
21(a).	If $y = \cos^3(\sec^2 2t)$, find $\frac{dy}{dt}$.	
Sol.	$y = \cos^3(\sec^2 2t)$	
	$\Rightarrow \frac{dy}{dt} = 3\cos^2(\sec^2 2t)[-\sin(\sec^2 2t)] \times \frac{d(\sec^2 2t)}{dt}$	1/2
	$\Rightarrow \frac{dy}{dt} = -3\cos^2(\sec^2 2t) \cdot \sin(\sec^2 2t) \times 2\sec 2t \cdot \sec 2t \tan 2t.2$	1
	$\therefore \frac{dy}{dt} = -12\cos^2(\sec^2 2t) \times \sin(\sec^2 2t) \times \sec^2 2t \times \tan 2t.$	1/2
	OR	
21(b).	If $x^{y} = e^{x-y}$, prove that $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^{2}}$.	
Sol.	$As, x^{y} = e^{x-y} \Longrightarrow \log(x^{y}) = \log(e^{x-y})$	
	$\Rightarrow y \log x = (x - y) \Rightarrow y = \frac{x}{1 + \log x}$	1
	<i>Now</i> , Differentiating both the sides wrt <i>x</i>	
	$\frac{dy}{dx} = \frac{(\log x + 1) \cdot 1 - x(\frac{1}{x})}{(\log x + 1)^2} = \frac{\log x}{(1 + \log x)^2}$	1
	$\frac{dx}{(\log x + 1)^2} = \frac{(1 + \log x)^2}{(1 + \log x)^2}$	1
22.	The volume of a cube is increasing at the rate of 6 cm ³ /s. How fast is the surface area of cube increasing, when the length of an edge is 8 cm?	
Sol.	Given, $\frac{dV}{dt} = 6 \text{ cm}^3 / \text{sec. Since}, V = x^3$	
	$\frac{dV}{dt} = 3x^2 \frac{dx}{dt} \Rightarrow 6 = 3x^2 \frac{dx}{dt} \Rightarrow \frac{dx}{dt} = \frac{2}{x^2} \text{ cm/sec}$	1
	Now, Surface Area = $S = 6x^2 \Rightarrow \frac{dS}{dt} = 12x \frac{dx}{dt} = 3 \text{ cm}^2 / \text{sec}$	1
23	Show that the function f given by $f(x) = \sin x + \cos x$, is strictly decreasing	
	in the interval $\left(\frac{\pi}{4}, \frac{5\pi}{4}\right)$.	
Sol.	$f(x) = \sin x + \cos x \Rightarrow f'(x) = \cos x - \sin x$	1
	$f'(x) = 0 \Rightarrow x = \frac{\pi}{4}, \frac{5\pi}{4}$ Thus, in the interval $\left(\frac{\pi}{4}, \frac{5\pi}{4}\right) f'(x) < 0$	
	$\therefore f$ is strictly decreasing function on $\left(\frac{\pi}{4}, \frac{5\pi}{4}\right)$	1

• 47.		
24(a).	Express $\tan^{-1} \left(\frac{\cos x}{1 - \sin x} \right)$, where $\frac{-\pi}{2} < x < \frac{\pi}{2}$ in the simplest form.	
Sol.	$y = \tan^{-1} \left[\frac{\cos x}{1 - \sin x} \right] = \tan^{-1} \left[\frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{(\cos \frac{x}{2} - \sin \frac{x}{2})^2} \right]$	1/2
	$y = \tan^{-1} \left[\frac{1 + \tan \frac{x}{2}}{1 - \tan \frac{x}{2}} \right] = \tan^{-1} \left[\tan \left(\frac{\pi}{4} + \frac{x}{2} \right) \right] = \left(\frac{\pi}{4} + \frac{x}{2} \right)$	1 ½
	OR	
24(b).	Find the principal value of $\tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{\sqrt{2}}\right)$.	
Sol.	$\tan^{-1}(1) + \left[\pi - \cos^{-1}(\frac{1}{2})\right] - \sin^{-1}(\frac{1}{\sqrt{2}}) = \frac{\pi}{4} + \left(\pi - \frac{\pi}{3}\right) - \frac{\pi}{4}$	1 ½
	$=\frac{2\pi}{3}$	1/2
25.	Find: $\int \frac{2x}{(x^2+1)(x^2-4)} dx$.	
Sol.	$I = \int \frac{2x}{(x^2 + 1)(x^2 - 4)} dx$	
	Put $x^2 = t \Rightarrow 2xdx = dt$	1/2
	$I = \int \frac{1}{(t+1)(t-4)} dt = \frac{1}{5} \int \frac{dt}{t-4} - \frac{1}{5} \int \frac{dt}{t+1}$	1
	$I = \frac{1}{5}\log x^2 - 4 - \frac{1}{5}\log x^2 + 1 + c \text{ or } \frac{1}{5}\log\left \frac{x^2 - 4}{x^2 + 1}\right + c$	1/2
	SECTION C In this section there are 6 short answer type questions of 3 marks each.	
26.	Find $\frac{dy}{dx}$, if $y = (\cos x)^x + \cos^{-1} \sqrt{x}$ is given.	
Sol.	Let $u = (\cos x)^x \Rightarrow \frac{du}{dx} = (\cos x)^x (-x \tan x + \log(\cos x)),$	1
	$v = \cos^{-1} \sqrt{x} \Rightarrow \frac{dv}{dx} = \frac{-1}{2\sqrt{x - x^2}}$	1
	Since, $y = u + v \Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} = (\cos x)^x (-x \tan x + \log(\cos x)) + \frac{-1}{2\sqrt{x - x^2}}$	1

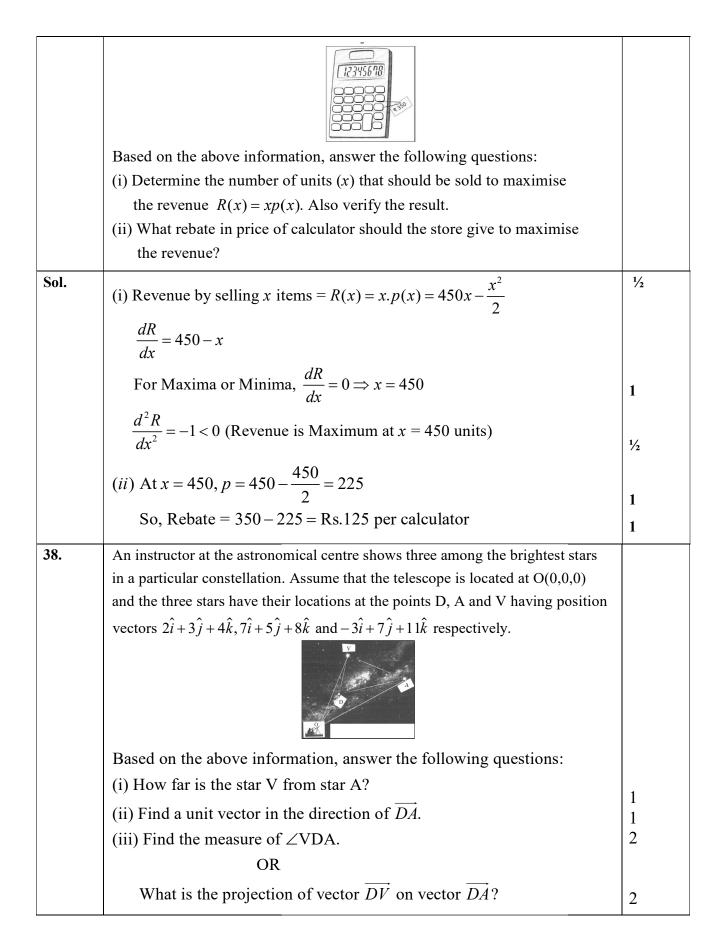
27(a).	Find the particular solution of the differential equation $\frac{dy}{dx} = y \cot 2x$,	
	given that $y\left(\frac{\pi}{4}\right) = 2$.	
Sol.	$\frac{dy}{dx} = y \cot 2x \Rightarrow \int \frac{dy}{y} = \int \cot 2x dx$	1
	$\Rightarrow \log y = \frac{1}{2}\log \sin 2x + \log c$	1
	$y = c.\sqrt{\sin 2x}$	1/2
	when $y(\frac{\pi}{4}) = 2$, gives $c = 2$	72
	$\therefore y = 2\sqrt{\sin 2x} \text{ is the required Particular solution of given D.E.}$	1/2
	OR	
27(b).	Find the particular solution of the differential equation	
	$(xe^{\frac{y}{x}} + y) dx = x dy$, given that $y = 1$ when $x = 1$.	
Sol.	$\frac{dy}{dx} = e^{\frac{y}{x}} + \frac{y}{x} = f(\frac{y}{x})$ so, its a homogeneous differential equation	
	Let $y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$	1
	Now, $v + x \frac{dv}{dx} = e^v + v$	
	$\Rightarrow \int e^{-v} dv = \int \frac{1}{x} dx$	1/2
	$\Rightarrow -e^{-v} = \log x + c \Rightarrow -e^{\frac{-y}{x}} = \log x + c \dots (1)$	1
	Now, $x = 1$, $y = 1$, gives $c = -e^{-1}$	
	Thus, $\log x + e^{\frac{-y}{x}} = e^{-1}$	1/2
28.	Find : $\int \sec^3 \theta \ d\theta$	
Sol.	$I = \int \sec^3 \theta \ d\theta = \int \sec^2 \theta . \sec \theta \ d\theta$	1/2
	$I = \sec \theta \int \sec^2 \theta \ d\theta - \int \left(\frac{d(\sec \theta)}{d\theta} \right) \left(\int \sec^2 \theta \ d\theta \right) \ d\theta$	1
	$I = \sec \theta \tan \theta - \int \sec^3 \theta \ d\theta + \int \sec \theta \ d\theta$	1/2
	$I = \frac{1}{2} \left(\sec \theta \tan \theta + \log \sec \theta + \tan \theta + c \right) \right)$	1

29(a).	10 10 10 10 10 10 10 10 10 10 10 10 10 1	
	A card from a well shuffled deck of 52 playing cards is lost. From the	
	remaining cards of the pack, a card is drawn at random and is found	
	to be a King. Find the probability of the lost card being a King.	
Sol.	Let E ₁ be the event of lost card is King,	
	E_2 be the event of lost card not a King and	1/2
	A be the event of drawing a King from remaining 51 cards.	
	so, $P(E_1) = \frac{1}{13}$, $P(E_2) = \frac{12}{13}$, $P(A E_1) = \frac{3}{51}$, $P(A E_2) = \frac{4}{51}$	1 ½
	Now, Required probability is $P(E_1 A)$,	
	$P(E_1 A) = \frac{P(A E_1) \times P(E_1)}{P(A E_1) \times P(E_1) + P(A E_2) \times P(E_2)} = \frac{\frac{1}{13} \times \frac{3}{51}}{\frac{1}{13} \times \frac{3}{51} + \frac{12}{13} \times \frac{4}{51}} = \frac{1}{17}$	1
	OR	
29(b).	A biased die is twice as likely to show an even number as an odd number. If such a die is thrown twice, find the probability distribution of the number of sixes. Also, find the mean of the distribution.	
Sol.		
	1 Let P(1) = P(3) = P(5) = n so P(2) = P(4) = P(6) = 2 n	
	Let $P(1)=P(3)=P(5) = p$, so $P(2)=P(4)=P(6) = 2 p$ As, $P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 1 \Rightarrow 9p = 1 \Rightarrow p = \frac{1}{9}$	1/2
	As, $P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 1 \Rightarrow 9p = 1 \Rightarrow p = \frac{1}{9}$	1/2
		1/2
	As, P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 1 \Rightarrow 9p = 1 \Rightarrow p = $\frac{1}{9}$ P(Getting 6)= $\frac{2}{9}$, P(Not getting six)= $\frac{7}{9}$	1/2
	As, $P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 1 \Rightarrow 9p = 1 \Rightarrow p = \frac{1}{9}$ $P(Getting 6) = \frac{2}{9}, P(Not getting six) = \frac{7}{9}$ Let X represents the Number of sixes	
	As, $P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 1 \Rightarrow 9p = 1 \Rightarrow p = \frac{1}{9}$ $P(Getting 6) = \frac{2}{9}, P(Not getting six) = \frac{7}{9}$ Let X represents the Number of sixes $Possible values of X are 0, 1 or 2$	
	As, $P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 1 \Rightarrow 9p = 1 \Rightarrow p = \frac{1}{9}$ P(Getting 6)= $\frac{2}{9}$, P(Not getting six)= $\frac{7}{9}$ Let X represents the Number of sixes Possible values of X are 0, 1 or 2 Now, $P(X=0)=\frac{7}{9} \times \frac{7}{9} = \frac{49}{81}$, $P(X=1)=2 \times \frac{7}{9} \times \frac{2}{9} = \frac{28}{81}$, $P(X=2)=\frac{2}{9} \times \frac{2}{9} = \frac{4}{81}$ Required probability distribution of number of sixes is	
	As, P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 1 \Rightarrow 9p = 1 \Rightarrow p = $\frac{1}{9}$ P(Getting 6)= $\frac{2}{9}$, P(Not getting six)= $\frac{7}{9}$ Let X represents the Number of sixes Possible values of X are 0, 1 or 2 Now, P(X=0)= $\frac{7}{9} \times \frac{7}{9} = \frac{49}{81}$, P(X=1)= $2 \times \frac{7}{9} \times \frac{2}{9} = \frac{28}{81}$, P(X=2)= $\frac{2}{9} \times \frac{2}{9} = \frac{4}{81}$	

	OR	
31(b).	Find: $\int e^x \left(\frac{x}{\sqrt{1+x^2}} + \frac{1}{(1+x^2)^{\frac{3}{2}}} \right) dx$	
Sol.	$I = \int e^{x} \left(\frac{x}{\sqrt{1+x^{2}}} + \frac{1}{(1+x^{2})^{\frac{3}{2}}} \right) dx$	
	$Let f(x) = \frac{x}{\sqrt{1+x^2}},$	1/2
	$f'(x) = \frac{\sqrt{1+x^2} - x\frac{x}{\sqrt{1+x^2}}}{1+x^2} = \frac{1+x^2 - x^2}{(1+x^2)\sqrt{1+x^2}} = \frac{1}{(1+x^2)^{\frac{3}{2}}}$	1 ½
	On applying $\int e^{x} (f(x) + f'(x)) dx = e^{x} f(x) + c$, $I = e^{x} \frac{x}{\sqrt{1 + x^{2}}} + c$	1
	SECTION D In this section there are 4 long answer type questions of 5 marks each.	
32(a).		
	Let A = R - $\{5\}$ and B = R - $\{1\}$. Consider the function f : A \rightarrow B, defined by $f(x) = \frac{x-3}{x-5}$. Show that f is one-one and onto.	
Sol.	Let $f(x_1) = f(x_2)$, for some $x_1, x_2 \in A$ $\Rightarrow \frac{x_1 - 3}{x_1 - 5} = \frac{x_2 - 3}{x_2 - 5}$ $\Rightarrow (x_1 - 3)(x_2 - 5) = (x_2 - 3)(x_1 - 5)$ $\Rightarrow x_1 = x_2, \text{ So } \underline{f} \text{ is one-one Function.}$	2 1/2
	Let $y = f(x) = \frac{x-3}{x-5} \Rightarrow y(x-5) = x-3$ $\Rightarrow yx - 5y = x-3$ $\Rightarrow x = \frac{5y-3}{y-1}$, We observe that x is defined for all values of y except $y = 1$,	2 ½
	So, Range = $R - \{1\}$ and Co-domain is Given $R - \{1\}$ [As, $f : A \rightarrow B$] Since, Range = Co-domain, f is onto Function. Thus, f is one-one & onto function.	
	OR	
32(b).	Check whether the relation S in the set of real numbers R defined by $S = \{(a, b) : \text{where } a - b + \sqrt{2} \text{ is an irrational number}\}$ is reflexive, symmetric or transitive.	

Sol.	D-G	
	Reflexive: For $a \in S$	
	$\Rightarrow a - a + \sqrt{2} \text{ is irrational number}$	
	$\Rightarrow \sqrt{2}$ is irrational number	1 ½
	$\Rightarrow (a,a) \in S$ Thus, S is Reflexive Relation.	
	Thus, 5 is <u>Reflexive Relation</u> .	
	Symmetric: Let $(a,b) \in S \Rightarrow a-b+\sqrt{2}$ is irrational number	
	but $b-a+\sqrt{2}$ may not be irrational number	
	For example, $(\sqrt{2},1) \in S \Rightarrow \sqrt{2} - 1 + \sqrt{2} = 2\sqrt{2} - 1$ is irrational number	
	$(1,\sqrt{2}) \notin S$ as $1-\sqrt{2}+\sqrt{2}=1$ is not irrational number	
	$\therefore (b,a) \notin S$, So S is NOT Symmetric Relation.	1 ½
	<u>Transitive</u> : Let $(a,b) \in S \Rightarrow a-b+\sqrt{2}$ is irrational number	
	$\&(b,c) \in S \Rightarrow b-c+\sqrt{2}$ is irrational number	
	but $a - c + \sqrt{2}$ may not be irrational number	
	For example, $(1, \sqrt{3}) \in S \Rightarrow 1 - \sqrt{3} + \sqrt{2}$ is irrational number	2
	$(\sqrt{3}, \sqrt{2}) \in S \Rightarrow \sqrt{3} - \sqrt{2} + \sqrt{2} = \sqrt{3}$ is irrational number	2
	But $(1,\sqrt{2}) \notin S$ as $1-\sqrt{2}+\sqrt{2}=1$ is not irrational number	
	$\therefore (a,c) \notin S$, So S is NOT Transitive Relation.	
	Thus, S is Reflexive But Neither Symmetric nor Transitive Relation.	
33(a).		
	Find the distance between the line $\frac{x}{2} = \frac{2y-6}{4} = \frac{1-z}{-1}$ and another	
	line parallel to it passing through the point $(4, 0, -5)$.	
Sol.	Equation of the given line in standard form is	
	$L_1: \frac{x}{2} = \frac{y-3}{2} = \frac{z-1}{1}$	1/2
	Equation of the line parallel to L_1 & passing through $(4, 0, -5)$ is	
	$L_2: \frac{x-4}{2} = \frac{y}{2} = \frac{z+5}{1}$	1
	Vector Equation of Lines are $L_1: \vec{r} = (0\hat{i} + 3\hat{j} + \hat{k}) + \lambda(2\hat{i} + 2\hat{j} + \hat{k})$	
	$L_2: \vec{r} = (4\hat{i} + 0\hat{j} - 5\hat{k}) + \mu(2\hat{i} + 2\hat{j} + \hat{k})$	
		1/2

	Now, $\vec{a_2} - \vec{a_1} = (4\hat{i} + 0\hat{j} - 5\hat{k}) - (0\hat{i} + 3\hat{j} + \hat{k}) = (4\hat{i} - 3\hat{j} - 6\hat{k})$	
	$\vec{b} = 2\hat{i} + 2\hat{j} + \hat{k}$	
	$\begin{vmatrix} \hat{i} & \hat{i} & \hat{k} \end{vmatrix}$	1
	$\begin{vmatrix} \vec{a_2} - \vec{a_1} \\ \vec{a_2} - \vec{a_1} \end{vmatrix} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & -3 & -6 \\ 2 & 2 & 1 \end{vmatrix} = 9\hat{i} - 16\hat{j} + 14\hat{k}$	
	$\begin{bmatrix} (a_2 & a_1) & \cdots & a_n \\ 2 & 2 & 1 \end{bmatrix}$	
		1/2
	$ \vec{b} = \sqrt{4+4+1} = 3$	
	Thus, distance between the lines is	1 ½
	S.D. = $\frac{ \vec{a_2} - \vec{a_1} \times \vec{b} }{ \vec{b} } = \frac{\sqrt{81 + 256 + 196}}{3} = \frac{\sqrt{533}}{3}$ units	
	OR	
33(b).	If the lines $\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2}$ and $\frac{x-1}{3k} = \frac{y-1}{1} = \frac{z-6}{-7}$ are perpendicular to each other, find the value of k and hence write the vector equation of a line perpendicular to these two lines and passing through the point $(3, -4, 7)$.	
	$L_1: \frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2} \Rightarrow \text{ direction ratio's of } L_1 = <-3, 2k, 2>$	
		1/2
	$L_2: \frac{x-1}{3k} = \frac{y-1}{1} = \frac{z-6}{-7} \Rightarrow \text{ direction ratio's of } L_2 = <3k,1,-7>$	1/2
	Since $L_1 \perp L_2$,	
	$-9k + 2k - 14 = 0 \Rightarrow k = -2$	1
	Thus, d.r.'s of $L_1 = <-3, -4, 2>$, d.r.'s of $L_2 = <-6, 1, -7>$	
	Now the vector perpendicular to both $L_1 \& L_2$ is given by	
	$\begin{vmatrix} \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -3 & -4 & 2 \\ -6 & 1 & -7 \end{vmatrix} = 26\hat{i} - 33\hat{j} - 27\hat{k}$	
	$ \vec{b} = -3 -4 2 = 26\hat{i} - 33\hat{j} - 27\hat{k}$	
	$\begin{vmatrix} -6 & 1 & -7 \end{vmatrix}$	2
	Thus, Equation of the required line is $\vec{r} = (3\hat{i} - 4\hat{j} + 7\hat{k}) + \lambda(26\hat{i} - 33\hat{j} - 27\hat{k})$	1
34.	Find A^{-1} , if $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & -1 \\ 1 & 0 & 1 \end{bmatrix}$. Hence, solve the following system of equations :	
	x + 2y + z = 5	
	2x + 3y = 1	
	x - y + z = 8	


Page | 14

Sol.	(1 2 1)	
501.	For Matrix $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & -1 \\ 1 & 0 & 1 \end{pmatrix}$, Adjoint of Matrix A is	
	$ A = -6 \neq 0$ so, A^{-1} exists.	1/2
	$adjA = \begin{pmatrix} 3 & -2 & -5 \\ -3 & 0 & 3 \\ -3 & 2 & -1 \end{pmatrix},$	2
	Thus, $A^{-1} = \frac{-1}{6} \begin{pmatrix} 3 & -2 & -5 \\ -3 & 0 & 3 \\ -3 & 2 & -1 \end{pmatrix}$	1/2
	so, Given equation can be written into a matrix equation as	
	$ \begin{vmatrix} 1 & 2 & 1 \\ 2 & 3 & 0 \\ 1 & -1 & 1 \end{vmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 5 \\ 1 \\ 8 \end{pmatrix} \Rightarrow X = (A^T)^{-1}.B = X = (A^{-1})^T.B $	1/2
	$A^T \qquad X = B$	
	$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{-1}{6} \begin{pmatrix} 3 & -3 & -3 \\ -2 & 0 & 2 \\ -5 & 3 & -1 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \\ 8 \end{pmatrix} = \frac{-1}{6} \begin{pmatrix} -12 \\ 6 \\ -30 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix} $	1 ½
	$\therefore \boxed{x=2, y=-1, z=5}$	
35(a).	Sketch the graph of $y = x x $ and hence find the area bounded by this curve, X-axis and the ordinates $x = -2$ and $x = 2$, using integration.	
Sol.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	For correct figure 1 ½
	As, $y = x \mid x \mid = \begin{cases} -x^2, x \le 0 \\ x^2, x \ge 0 \end{cases}$	

Page | 15

	Area of the shaded region = $\int_{0}^{2} y dx = 2 \int_{0}^{2} y dx = 2 \int_{0}^{2} x^{2} dx$	
	-2 0 0	1 1/2
	$=2\left(\frac{x^3}{3}\right)_0^2$	1
	$=2\left(\frac{8}{3}\right)=\frac{16}{3}$	1
	OR	
35(b).	Using integration, find the area bounded by the ellipse $9x^2 + 25y^2 = 225$, the lines $x = -2$, $x = 2$, and the X-axis.	
Sol.	As, $9x^{2} + 25y^{2} = 225 \Rightarrow y = \pm \frac{3}{5}\sqrt{5^{2} - x^{2}}$ Required Area $= \int_{-2}^{2} \frac{3}{5}\sqrt{5^{2} - x^{2}} dx = \frac{6}{5} \int_{0}^{2} \sqrt{5^{2} - x^{2}} dx$	For correct figure 1 ½
	$= \frac{6}{5} \left(\frac{x\sqrt{5^2 - x^2}}{2} + \frac{25}{2} \sin^{-1} \left(\frac{x}{5} \right) \right)_0^2$	1
	$=\frac{6}{5}\left(\frac{2\sqrt{21}}{2}+\frac{25}{2}\sin^{-1}\left(\frac{2}{5}\right)\right)$	
	$= \left(\frac{6\sqrt{21}}{5} + 15\sin^{-1}\left(\frac{2}{5}\right)\right)$	1
	SECTION E In this section there are 3 case-study based questions of 4 marks each.	
	211 2110 Section there are a case stady bused questions of a marks each.	

36.	Rohit, Jaspreet and Alia appeared for an interview for three vacancies in the	
30.		
	same post. The probability of Rohit's selection is $\frac{1}{5}$, Jaspreet's selection is $\frac{1}{3}$	
	and Alia's selection is $\frac{1}{4}$. The event of selection is independent of each other.	
	Based on the above information, answer the following questions:	
	(i) What is the probability that at least one of them is selected?	1
	(ii) Find P(G H) where G is the event of Jaspreet's selection and H denotes the	
	event that Rohit is not selected. (iii) Find the probability that exactly one of them is selected.	1
	(iii) Find the probability that exactly one of them is selected. OR	2
	(iii) Find the probability that exactly two of them are selected.	2
Sol.	Given P(Rohit) = $\frac{1}{5}$, P(Jaspreet) = $\frac{1}{3}$, P(Alia) = $\frac{1}{4}$	
	(i) P(atleast one of them is selected) = $1 - P(\text{no one is selected})$	
	$= 1 - \left(\frac{4}{5} \times \frac{2}{3} \times \frac{3}{4}\right) = \frac{3}{5}$	1
	(ii) $P(G \overline{H}) = \frac{P(G \cap \overline{H})}{P(\overline{H})} = \frac{1}{3}$	1
	(iii) P(exactly one of them selected)	
	$= P(R) \times P(\overline{J}) \times P(\overline{A}) + P(\overline{R}) \times P(J) \times P(\overline{A}) + P(\overline{R}) \times P(\overline{J}) \times P(\overline{A})$	1
	$=\frac{6+12+8}{60}=\frac{13}{30}$	1
	60 30	-
	OR	
	(iii) P(exactly two of them selected)	1
	$= P(R) \times P(J) \times P(\overline{A}) + P(R) \times P(\overline{J}) \times P(A) + P(\overline{R}) \times P(J) \times P(A)$	1
	$=\frac{3+2+4}{60}=\frac{3}{20}$	1
37.	A store has been selling calculators at Rs. 350 each. A market survey indicates	
	that a reduction in price (p) of calculator increases the number of units (x) sold.	
	The relation between the price and quantity sold is given by demand function	
	$p = 450 - \frac{x}{2}.$	

Sol.	(i) \overrightarrow{AV} = Position Vector of V - Position Vector of A = $-10\hat{i} + 2\hat{j} + 3\hat{k}$	1/2
	Thus, $ \overrightarrow{AV} = \sqrt{100 + 4 + 9} = \sqrt{113}$ units	1/2
	(ii) \overrightarrow{DA} = Position Vector of A - Position Vector of D = $5\hat{i} + 2\hat{j} + 4\hat{k}$ Unit vector in the direction of $\overrightarrow{DA} = \frac{5\hat{i} + 2\hat{j} + 4\hat{k}}{3\sqrt{5}}$	1/2
	(iii) $\overrightarrow{DV} = -5\hat{i} + 4\hat{j} + 7\hat{k}$ $\angle VDA = \cos^{-1}\left(\frac{\overrightarrow{DV}.\overrightarrow{DA}}{ \overrightarrow{DV} \overrightarrow{DA} }\right) = \cos^{-1}\left(\frac{11\sqrt{2}}{90}\right)$	1 ½
	OR (iii) $\overrightarrow{DV} = -5\hat{i} + 4\hat{j} + 7\hat{k}$ Projection of \overrightarrow{DV} on $\overrightarrow{DA} = \left(\frac{\overrightarrow{DV}.\overrightarrow{DA}}{ \overrightarrow{DA} }\right) = \frac{11\sqrt{5}}{15}$	1 ½